

One Cell Li-ion and Li-poly Battery Protection IC

Features

- Protection of Charger Reverse Connection
- Protection of Battery Cell Reverse Connection
- Over-temperature Protection
- Overcharge Current Protection
- Two-step Overcurrent Detection: Over Discharge Current Load Short Circuiting
- Charger Detection Function
- RoHS Compliant and Lead (Pb) Free

- $45m\Omega$ Low $R_{SS(ON)}$ Internal Power MOSFET
- Delay Times are generated inside
- High-accuracy Voltage Detection
- Down Current Consumption
 Operation Mode: 2.5μA typ.
 Power-down Mode: 1.5μA typ.
- Only One External Capacitor Required
- Available in SOT23-5 Package
- -40°C to +85°C Temperature Range

Applications

- One-Cell Li-ion Battery Pack
- Power Bank

- One-Cell Li-poly Battery Pack
- IOT Sensor/Electronic Toys

Typical Application Circuit

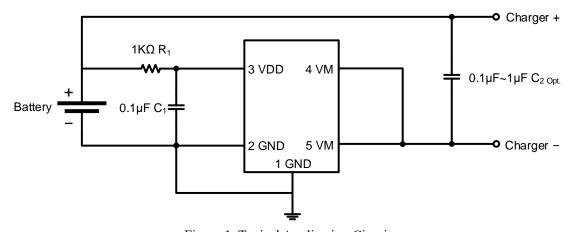


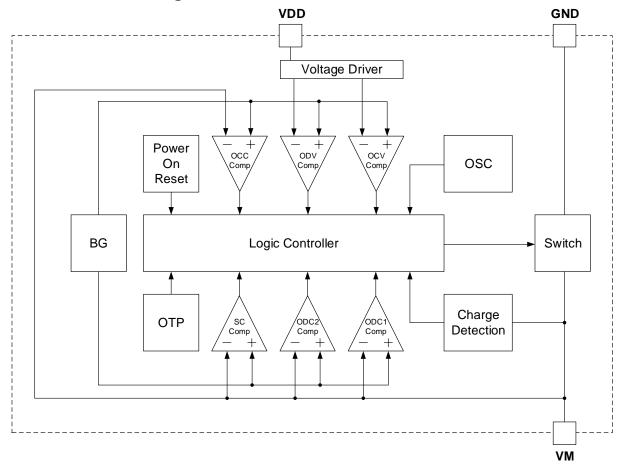
Figure 1. Typical Application Circuit

Absolute Maximum Ratings (1) (2)

VDD Input Voltage0.3V to 6V	VM Input Voltage6V to $10 V V_{BS}$
Operating Temperature Range40°C to +85°C	Storage Temperature Range55°C to 150°C
Lead Temperature (Soldering, 10s)+300°C	Junction Temperature+125°C
θ_{JA} 250°C/W	ESD (Human Body Made) HMB2KV
θ_{JC}	ESD (Machine Made) MM

Note 1: Exceeding these ratings may damage the device.

Note 2: The device is not guaranteed to function outside of its operating conditions.


Electrical Characteristics (3)

Parameter	Symbol	Test Conditions	Min	Тур.	Max	Unit	
Detection Voltage	•					•	
Overcharge Detection Voltage				4.3	4.35	V	
Overcharge Release Voltage	V_{CL}		4.05	4.1	4.15	V	
Overdischarge Detection Voltage	V_{DL}		2.3	2.4	2.5	V	
Overdischarge Release Voltage	V_{DR}		2.9	3.0	3.1	V	
Charger Detection Voltage				-0.12		V	
Detection Current	•					•	
Overdischarge Current1 Detection	*I _{IOV1}	V _{DD} =3.6V		3		A	
Load Short-Circuiting Detection	Short-Circuiting Detection *I _{SHORT} V _{DD} =3.6V			15		A	
Current Consumption							
Current Consumption in Operation	I _{OPE}	V _{DD} =3.6V VM=0V		2.5	5	μΑ	
Current Consumption in power Down	nt Consumption in power Down I_{PDN} $V_{DD}=2.0V$ VM floating			1.5	4	μΑ	
VM Internal Resistance			•	•	•		
Resistance between VM and V _{DD}	*R _{VMD}	V _{DD} =3.6V VM=1.0V		320		kΩ	
Resistance between VM and GND	ance between VM and GND $*R_{VMS}$ $V_{DD}=2.0V$ $VM=1.0V$			25		kΩ	
FET on Resistance	1	1		•		1	
Equivalent FET on Resistance	*R _{SS(ON)}	V _{DD} =3.6V I _{VM} =1.0A		45		mΩ	
Over Temperature Protection							
Over Temperature Protection	Temperature Protection *T _{SHD+}			130		°C	
Over Temperature Recovery Degree *7				100		°C	
Detection Delay Time							
Overcharge Voltage Detection Delay Time t _{CU}				128	200	mS	
Overdischarge Voltage Detection Delay Time	t_{DL}			40	60	mS	
Overdischarge Current Detection Delay Time	*t _{IOV}	V _{DD} =3.6V		10		mS	
Load Short-Circuiting Detection Delay Time	*t _{SHORT}	V _{DD} =3.6V		80		μS	

Note 3: *The parameter is guaranteed by design.

Functional Block Diagram

Overdischarge current detection

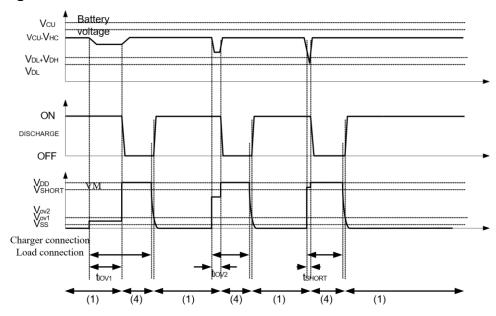
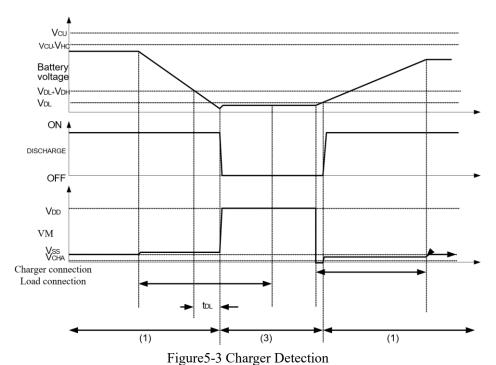



Figure 5-2 Overdischarge Current Detection

Remark:

- (1) Normal condition (2) Overcharge voltage condition
- (3) Overdischarge voltage condition (4) Overcurrent condition

Charger Detection

Remark:

- (1) Normal condition (2) Overcharge voltage condition
- (3) Overdischarge voltage condition (4) Overcurrent condition

Pin Description

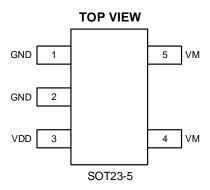
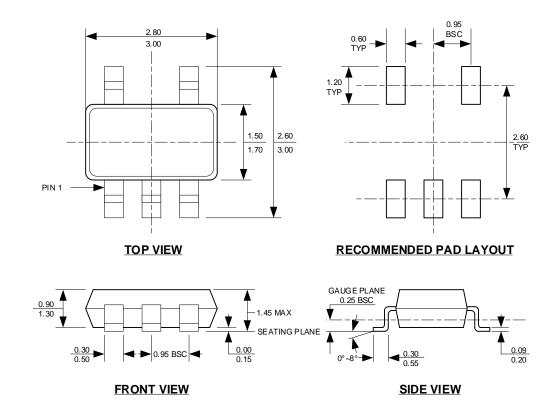


Figure 2. Pin Configuration


Pin Description

Pin	Name	Function
1	GND	Ground Pin
2	GND	Ground Pin
3	VDD	Power Supply Pin
4	VM	The negative terminal of the battery pack. The internal FET switch connects this terminal to GND
5	VM	The negative terminal of the battery pack. The internal FET switch connects this terminal to GND

Package Description

SOT23-5

NOTE:

- NOTE:

 1. CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.

 2. PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

 3. PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

 4. LEAD COPLANARITY (BOTTO M OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.

 5. DRAWING CONFORMS TO JEDEC MS-012, VARIATION BA.
- 6. DRAWING IS NOT TO SCALE.

CCS Semiconductor and CSEMİ are trademarks of Semiconductor Components Industries, CCS Semiconductor reserves the right to make changes without further notice to any products herein. CCS Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does CCS Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. CCS Semiconductor does not convey any license under its patent rights nor the rights of others.