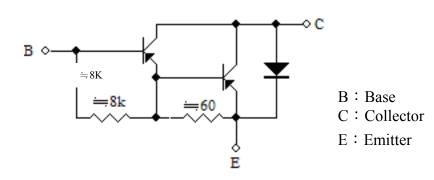


# 2SB1580

**PNP EPITAXIAL PLANAR TRANSISTOR** 

#### DESCRIPTION


The 2SB1580 is a PNP Darlington transistor, designed for use in general purpose amplifier and low speed switching application ..



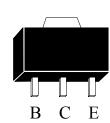
#### **FEATURES**

- Collector-Emitter Voltage: V<sub>CEO</sub> = -120V
- Collector Dissipation: P<sub>C(MAX)</sub> = 600mW
- Low Collector-Emitter Saturation Voltage

#### **Equivalent Circuit**



## ABSOLUTE MAXIMUM RATING (T<sub>A</sub>=25°C unless otherwise specified)


| PARAMETER                       |       | SYMBOL           | RATING     | UNIT |  |
|---------------------------------|-------|------------------|------------|------|--|
| Collector-Base Voltage          |       | V <sub>CBO</sub> | -120       | V    |  |
| Collector-Emitter Voltage       |       | V <sub>CEO</sub> | -100       | V    |  |
| Emitter-Base Voltage            |       | V <sub>EBO</sub> | -4         | V    |  |
| Collector Current               | DC    | lc               | -4         | A    |  |
|                                 | Pulse | I <sub>CP</sub>  | -6         | A    |  |
| Collector Dissipation (Ta=25°C) |       | Pc               | 600        | mW   |  |
| Junction Temperature            |       | TJ               | +125       | °C   |  |
| Storage Temperature             |       | T <sub>STG</sub> | -55 ~ +150 | °C   |  |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Pulse test: Pulse Width  $\leq$  350µs, Duty Cycle  $\leq$  2%.

#### THERMAL DATA

| PARAMETER           | SYMBOL          | RATINGS | UNIT |
|---------------------|-----------------|---------|------|
| Junction to Ambient | θ <sub>JA</sub> | 208     | °C/W |



**SOT-89** 

Ver.1.0

# <u>esemi</u>

### ■ **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                            | SYMBOL               | TEST CONDITIONS                           | MIN  | TYP | MAX  | UNIT |
|--------------------------------------|----------------------|-------------------------------------------|------|-----|------|------|
| Collector-Base Breakdown Voltage     | BV <sub>CBO</sub>    | I <sub>C</sub> =-1mA, I <sub>B</sub> =0   | -120 |     |      | V    |
| Collector-Emitter Breakdown Voltage  | BV <sub>CEO</sub>    | I <sub>C</sub> =-100μΑ, I <sub>E</sub> =0 | -100 |     |      | V    |
| Collector Cut-off Current            | I <sub>CBO</sub>     | V <sub>CB</sub> =-120V, I <sub>E</sub> =0 |      |     | -10  | μA   |
| Collector Cut-off Current            | I <sub>CEO</sub>     | V <sub>CB</sub> =-100V, I <sub>B</sub> =0 |      |     | -10  | μA   |
| Emitter Cut-off Current              | I <sub>EBO</sub>     | V <sub>EB</sub> =-5V, I <sub>C</sub> =0   |      |     | -2.2 | mA   |
| DC Current Gain (Note)               | h <sub>FE</sub>      | V <sub>CE</sub> =-4V, I <sub>C</sub> =-1A | 1000 |     |      |      |
|                                      |                      | V <sub>CE</sub> =-4V, I <sub>C</sub> =-2A | 2000 |     |      |      |
| Collector-Emitter Saturation Voltage | V <sub>CE(SAT)</sub> | I <sub>C</sub> =-2A, I <sub>B</sub> =-2mA |      |     | -2   | V    |
| Base-Emitter Saturation Voltage      | V <sub>BE(ON)</sub>  | $V_{CE}$ =-4V, I <sub>C</sub> =-2A        |      |     | -2.8 | V    |
|                                      |                      | V <sub>CE</sub> =-4V, I <sub>C</sub> =-1A |      |     | -2   | V    |
|                                      |                      | V <sub>CE</sub> =-4V, I <sub>C</sub> =-4A |      |     | -3   | V    |
| Output Capacitance                   | Cob                  | $V_{CB}$ =-10V, I <sub>E</sub> =0, f=1MHz |      |     | 200  | pF   |

Note: Pulse test: Pulse Width  $\leq$  380µs, Duty Cycle  $\leq$  2%.

CCS Semiconductor and CSCM are trademarks of Semiconductor Components Industries, CCS Semiconductor reserves the right to make changes without further notice to any products herein. CCS Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does CCS Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. CCS Semiconductor does not convey any license under its patent rights nor the rights of others.

Ver.1.0