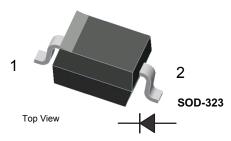


Low-leakage Diode

■ Features

Plastic SMD package


● Low leakage current: typ. 3 pA

• Switching time: typ. 0.8 μs

Continuous reverse voltage: max. 75 V

• Repetitive peak reverse voltage: max. 85 V

• Repetitive peak forward current: max. 500 mA.

PIN DESCRIPTION

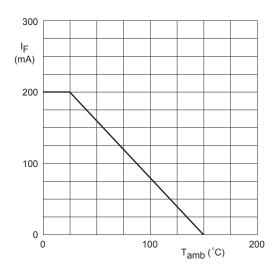
PIN DESCRIPTION

1 Cathode

2 Anode

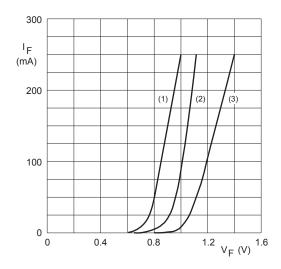
■ Absolute Maximum Ratings (TA=25°C unless otherwise noted)

Parameter	Symbol	Rating	Unit	
Repetitive Peak Reverse Voltage	VRRM	85	V	
Continuous Reverse Voltage	VR	75	V	
Continuous Forward Current (see Fig.1)	lF	200	mA	
Repetitive Peak Forward Current	IFRM	500	IIIA	
Non-Repetitive Peak Forward Current				
(Square Wave, T _J = 25°C prior to surge, see Fig.3)				
t = 1 μs	IFSM	4	Α	
t = 1 ms		1		
t = 1 s		0.5		
Total Device Dissipation (Note 1)	Ptot	250	mW	
Thermal Resistance Junction to Ambient	Reja	450	°C/W	
Junction Temperature	TJ	150	°C	
Storage Temperature range	Tstg	-55 to 150		


Note 1. Device mounted on an FR4 printed-circuit board.

■ Electrical Characteristics (TA = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Тур	Max	Unit	
Forward voltage (see Fig.2)	VF1	IF= 1 mA			0.9		
	VF2	IF= 10 mA			1	v	
	VF3	IF= 50 mA			1.1	V	
	VF4	IF= 150 mA			1.25		
Reverse voltage leakage current (see Fig.4)	lR1	VR= 75 V		0.003	5	nA	
	lR2	VR= 75 V, TJ= 150℃		3	80		
Diode Capacitance (see Fig.5)	CD	VR= 0 V, f= 1 MHz		2		pF	
Reverse recovery time (see Fig.6)		when switched from IF = 10 mA to					
	trr	IR = 10 mA; RL = 100 Ω ; measured at IR = 1 mA;		0.8	3	μs	



■ Typical Characterisitics

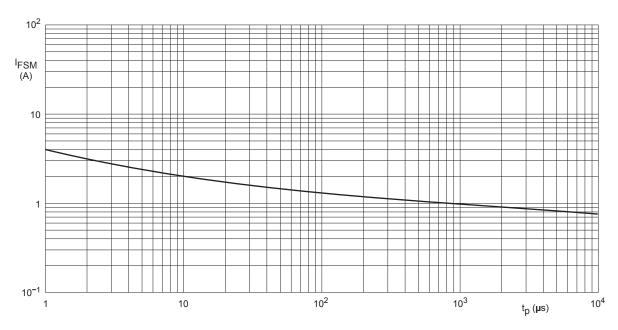
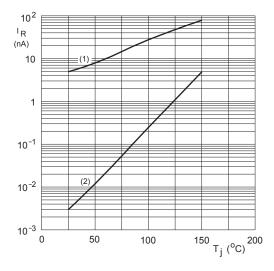
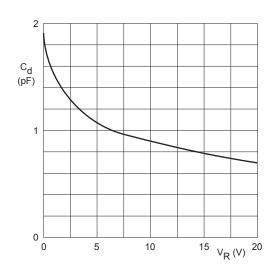

Device mounted on an FR4 printed-circuit board.

Fig.1 Maximum permissible continuous forward current as a function of ambient temperature.

- (1) $T_j = 150$ °C; typical values.
- (2) $T_j = 25$ °C; typical values.
- (3) $T_j = 25$ °C; maximum values.

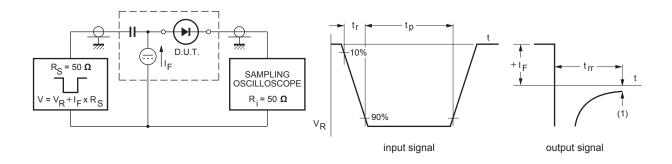
Fig.2 Forward current as a function of forward voltage.




Based on square wave currents.

 T_j = 25 °C prior to surge.

Fig.3 Maximum permissible non-repetitive peak forward current as a function of pulse duration.


V_R = 75 V.

- (1) Maximum values.
- (2) Typical values.

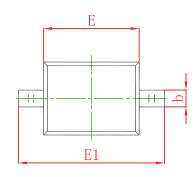
Fig.4 Reverse current as a function of junction temperature.

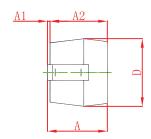
f = 1 MHz; $T_i = 25 \,^{\circ}\text{C}$.

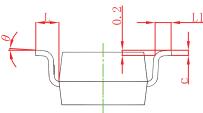
Fig.5 Diode capacitance as a function of reverse voltage; typical values.

(1) $I_R = 1 \text{ mA}$.

Input signal: reverse pulse rise time t_r = 0.6 ns; reverse voltage pulse duration t_p = 100 ns; duty factor δ = 0.05; Oscilloscope: rise time t_r = 0.35 ns.

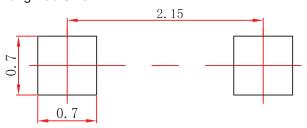

Fig.6 Reverse recovery voltage test circuit and waveforms.




■ Package Outline Dimensions

Plastic surface mounted package; 2 leads

SOD-323



Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α		1.000		0.039	
A1	0.000	0.100	0.000	0.004	
A2	0.800	0.900	0.031	0.035	
b	0.250	0.350	0.010	0.014	
С	0.080	0.150	0.003	0.006	
D	1.200	1.400	0.047	0.055	
E	1.600	1.800	0.063	0.071	
E1	2.550	2.750	0.100	0.108	
L	0.475 REF.		0.019	REF.	
L1	0.250	0.400	0.010	0.016	
θ	0°	8°	0°	8°	

■ The Recommended Mounting Pad Size

Note:

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: \pm 0.05 mm.
- 3. The pad layout is for reference purposes only.

CCS Semiconductor and CSEMI are trademarks of Semiconductor Components Industries, CCS Semiconductor reserves the right to make changes without further notice to any products herein. CCS Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does CCS Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. CCS Semiconductor does not convey any license under its patent rights nor the rights of others.