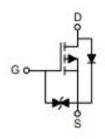


P-Ch 20V Fast Switching MOSFETS

Product Summary


BVDSS	RDSON	ID
-20V	420mΩ	-0.8A

- Super Low Gate Charge
- Low Threshold
- High-Side Switching
- Advanced high cell density Trench technology

SOT523

Equivalent Circuit

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	-20	V
Vgs	Gate-Source Voltage	±8	V
Id@Ta=25°C	Continuous Drain Current, Vgs @ -4.5V1	-0.8	А
Ірм	Pulsed Drain Current ₂	-2.4	А
Pd@Ta=25°C	Total Power Dissipation3	0.35	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient 1		357	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVpss	Drain-Source Breakdown Voltage	V _G s=0V , I _D =-250uA	- 20			V	
△BVpss/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , I□=-1mA		-0.014		V/°C	
D		Vgs=-4.5V , Ip=-0.5A		420	500		
Rds(on)	Static Drain-Source On-Resistance2	Vgs=-2.5V , Ip=-0.3A		550	680	mΩ	
VGS(th)	Gate Threshold Voltage	Vgs=Vps . Ip =-250uA	-0.5	-0.67	-1.1	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID250UA		3.95		mV/°C	
Ipss	Drain Source Leakage Current	V _{DS} =-16V , V _{GS} =0V , T _J =25°C	-		-1		
IDSS	Drain-Source Leakage Current	V _{DS} =-16V , V _{GS} =0V , T _J =55°C			-5	uA	
lgss	Gate-Source Leakage Current	Vgs=±10V, Vps=0V	1		±20	nA	
Qg			1	1	-	nC	
Qgs		V _{DS} =-10V , V _{GS} =-2.5V , I _D =-0.5A	1	0.2			
Qgd	Gate-Drain Charge		-	0.26			
Td(on)	Turn-On Delay Time		-	9			
Tr	Rise Time V_{DD} =-10V , Vgs=-4.5V , Rg=1 Ω			10		ns	
Td(off)	Turn-Off Delay Time	I _D =-0.5A		10		115	
Tf	Fall Time		-	8			
Ciss	Input Capacitance	V _{DS} =-10V , V _{GS} =0V , f=1MHz		45			
Coss	Output Capacitance		-	15		pF	
Crss	Reverse Transfer Capacitance		I	10			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VsD	Diode Forward Voltage ₂	Vgs=0V , Is=-1A , TJ=25°C			-1.2	٧

Note:

- 1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width ≤ 300 us , duty cycle $\leq 2\%$
- 3.The power dissipation is limited by 150°C junction temperature
- 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

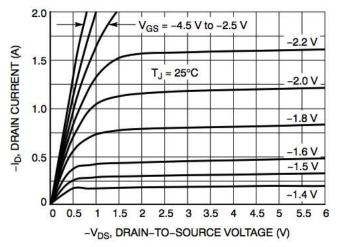


Figure 1. On-Region Characteristics

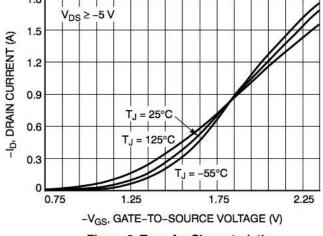


Figure 2. Transfer Characteristics

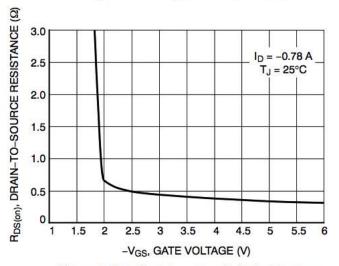


Figure 3. On-Resistance vs. Gate-to-Source Voltage

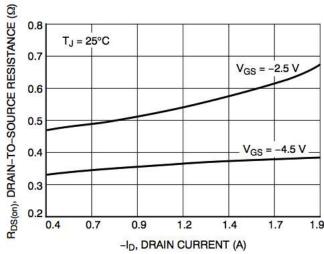


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

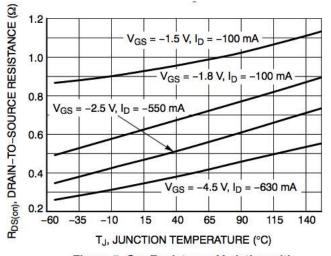


Figure 5. On–Resistance Variation with Temperature

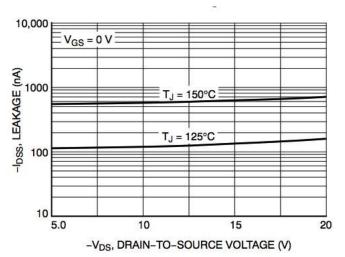
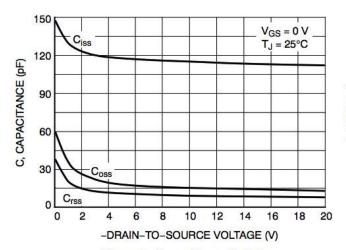



Figure 6. Drain-to-Source Leakage Current vs. Voltage

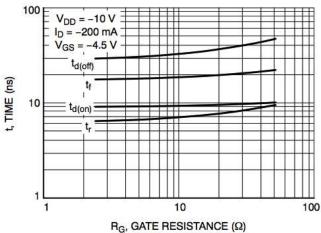
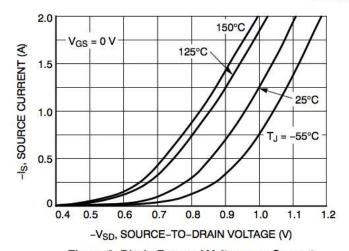
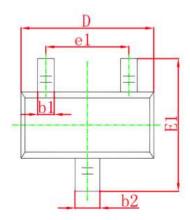
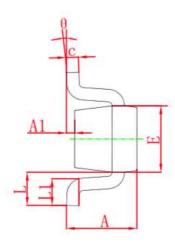
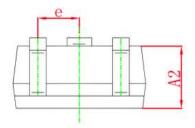


Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance


Figure 9. Diode Forward Voltage vs. Current

SOT523 Pin Configuration

Combal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.700	0.900	0.028	0.035
A1	0.000	0.100	0.000	0.004
A2	0.700	0.800	0.028	0.031
b1	0.150	0.250	0.006	0.010
b2	0.250	0.350	0.010	0.014
С	0.100	0.200	0.004	0.008
D	1.500	1.700	0.059	0.067
E	0.700	0.900	0.028	0.035
E1	1.450	1.750	0.057	0.069
е	0.500 TYP.		0.020 TYP.	
e1	0.900	1.100	0.035	0.043
L	0.400 REF.		0.016 REF.	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

CCS Semiconductor and series trademarks of Semiconductor Components Industries, CCS Semiconductor reserves the right to make changes without further notice to any products herein. CCS Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does CCS Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. CCS Semiconductor does not convey any license under its patent rights nor the rights of others.