

20V N-Channel Enhancement Mode MOSFET

Voltage 20 V Current 8 A

Features

- $R_{DS(ON)}$, $V_{GS}@10V$, $I_D@8A<11m\Omega$
- $R_{DS(ON)}$, $V_{GS}@4.5V$, $I_{D}@6A<15m\Omega$
- Advanced Trench Process Technology
- High density cell design for ultralow on-resistance

Mechanical Data

• Case: S0T23L Package

• Terminals: Solderable per MIL-STD-750, Method 2026

• Approx. Weight: 0.0004ounces, 0.0085 grams

Maximum Ratings and Thermal Characteristics (TA=25 C unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS	
Drain-Source Voltage		V _{DS}	20	V	
Gate-Source Voltage		V _{GS}	<u>+</u> 12		
Continuous Drain Current	T _C =25°C	I _D	8	А	
	T _C =100°C	ם יו	6		
Pulsed Drain Current(Note 1)	T _C =25°C	I _{DM}	16	1	
Power Dissipation	T _C =25°C	. P _D	1.5	W	
1 OWE DISSIPATION	Derate above 25°C		12		
Operating Junction and Storage Temperature Range		T_{J}, T_{STG}	-55~150	°C	
Typical Thermal Resistance ^(Note 4,5)				- °C/W	
Typical Memai Resistance	Junction to Ambient	$R_{\theta JA}$	80		

• Limited only By Maximum Junction Temperature

Electrical Characteristics (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS	
Static							
Drain-Source Breakdown Voltage	BV _{DSS} V _{GS} =0V,I _D =250uA		20	-	-	V	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{GS(th)}$ $V_{DS}=V_{GS},I_D=250uA$		1.75	2.5		
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =10V,I _D =8A	-	8.5	11	mΩ	
		V _{GS} =4.5V,I _D =6A	-	11.5	15		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1.0	uA	
Gate-Source Leakage Current	I_{GSS}	V _{GS} = <u>+</u> 12V,V _{DS} =0V	-	-	<u>+</u> 100	nA	
Dynamic (Note 6)							
Total Gate Charge	Q_g	\/ 00\/ L 40A	-	10	-	nC	
Gate-Source Charge	Q_gs	V_{DS} =20V, I_{D} =10A, V_{GS} =4.5V (Note 2,3)	-	3.5	-		
Gate-Drain Charge	Q_gd	V _{GS} -4.3V	-	3.6	-		
Input Capacitance	Ciss	N/ 00\/ \/ 0\/	-	1040	-	pF	
Output Capacitance	Coss	V _{DS} =20V, V _{GS} =0V, f=1.0MHZ	-	117	-		
Reverse Transfer Capacitance	Crss	I-I.UIVITZ	-	84	-		
Turn-On Delay Time	td _(on)	V _{DS} =20V, I _D =1A,	-	9.4	-		
Turn-On Rise Time	t _r	V_{GS} =10V, R_{G} =6 Ω	-	19	-	ns	
Turn-Off Delay Time	td _(off)	(Note 2,3)	-	66	-		
Turn-Off Fall Time	t _f		-	67	-		
Drain-Source Diode							
Maximum Continuous Drain-Source	I.			42	A		
Diode Forward Current	Is		<u>-</u>	-	42	Α	
Diode Forward Voltage	V_{SD}	I _S =1A,V _{GS} =0V	_	0.7	1	V	

NOTES:

- 1. Pulse width < 300us, Duty cycle < 2%.
- 2. Essentially independent of operating temperature typical characteristics.
- 3. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- 4. The maximum current rating is package limited.
- 5. R_{OJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch² with 2oz.square pad of copper.
- 6. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTIC CURVES

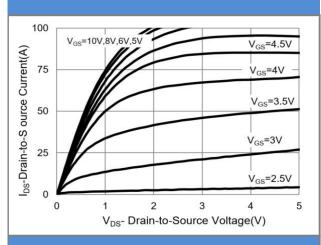


Fig.1 On-Region Characteristics

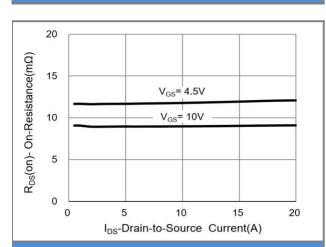


Fig.3 On-Resistance vs. Drain Current

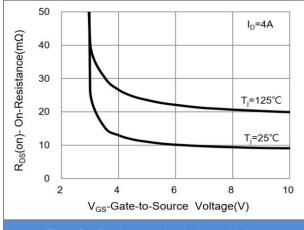
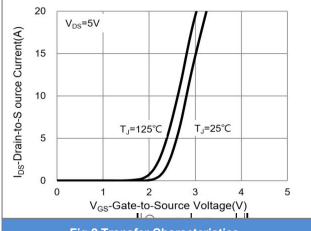



Fig.5 On-Resistance Variation with V_{GS}

Fig.2 Transfer Characteristics

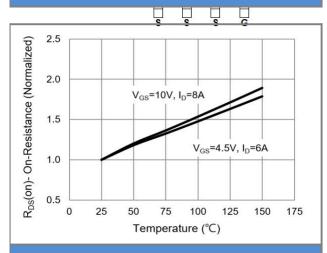


Fig.4 On-Resistance vs. Junction temperature

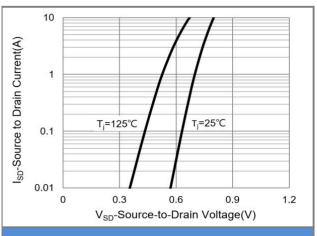


Fig.6 Source-Drain Diode Forward Voltage

TYPICAL CHARACTERISTIC CURVES

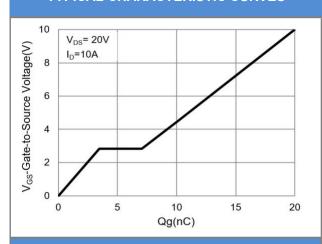


Fig.7 Gate-Charge Characteristics

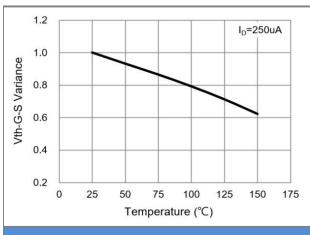


Fig.9 Threshold Voltage Variation with Temperature

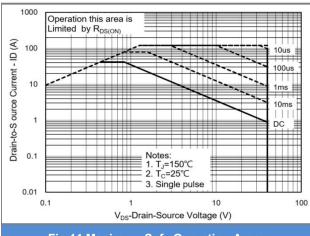


Fig.11 Maximum Safe Operating Area

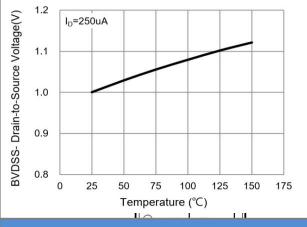


Fig.8 Breakdown Voltage Variation vs. Temperature

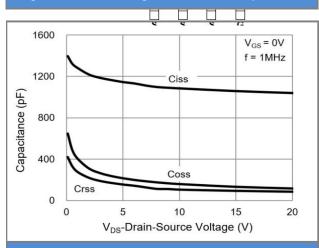
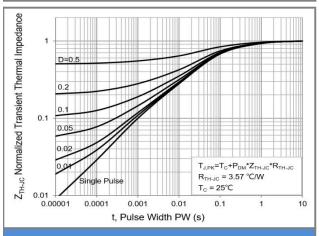
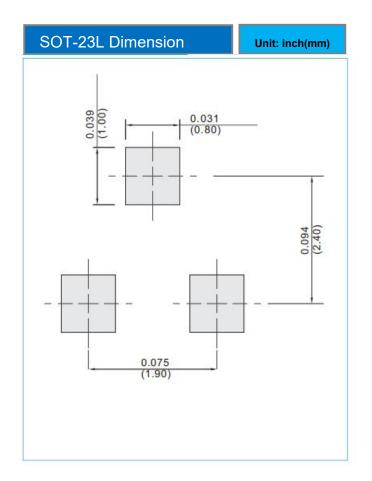


Fig.10 Capacitance vs. Drain-Source Voltage




Fig.12 Normalized Transient Thermal Impedance

Part No Packing Code Version

Part No Packing Code	Package Type	Packing Type
CSM212N8S23L	SOT-23L	5K pcs / 13" reel

Packaging Information & Mounting Pad Layout

Notice

Specifications of the products displayed herein are subject to change without notice.

CCS or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No lice nse, express or implied, to any intellectual property rights is granted by this document. E xcept as provided in CCS terms and conditions of sale for such products, CCS assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale a nd/or use of CCS products including liability or warranties relating to fitness for a particul ar purpose, merchant ability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or lifesustaining applications.

Customers using or selling these products for use in such applications do so at their ow n risk and agree to fully indemnify CCS for any damages resulting from such improper use or sale.