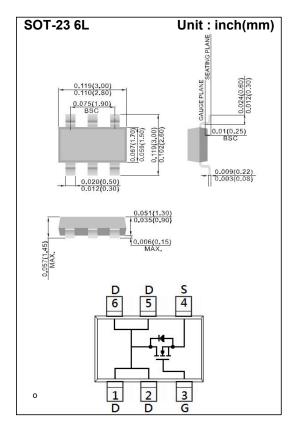


60V N-Channel Enhancement Mode MOSFET

Voltage

60 V

Current


4 A

Features

- $R_{DS(ON)}$, V_{GS} @10V, I_D @5A<65m Ω
- R_{DS(ON)}, V_{GS}@4.5V, I_D@3A<70mΩ
- Advanced Trench Process Technology
- High density cell design for ultra low on-resistance

Mechanical Data

- Case: SOT-23 6L Package
- Terminals: Solderable per MIL-STD-750, Method 2026
- Approx. Weight: 0.0005 ounces, 0.014 grams

Maximum Ratings and Thermal Characteristics (T_A=25 C unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS	
Drain-Source Voltage		V _{DS}	60	.,	
Gate-Source Voltage		V _{GS}	<u>+</u> 20	V	
Continuous Drain Current (Note 4)	T _A =25°C	I _D	4		
Pulsed Drain Current (Note 1)		I _{DM}	16	Α	
Power Dissipation	T _A =25°C	P _D	3.1	W	
Operating Junction and Storage Temperature Range		T_{J}, T_{STG}	-55~150	°C	
Typical Thermal Resistance					
Junction to Ambient (Note 4,5)		$R_{\theta JA}$	40.3	°C/W	

• Limited only By Maximum Junction Temperature

Electrical Characteristics (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Static						
Drain-Source Breakdown Voltage	BV_DSS	V _{GS} =0V, I _D =250uA	60	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250uA	1	1.8	2.5	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =10V, I _D =5A	-	53	65	mΩ
		V _{GS} =4.5V, I _D =3A	-	61	70	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V	-	-	1	uA
Gate-Source Leakage Current	I_{GSS}	V _{GS} = <u>+</u> 20V, V _{DS} =0V	-	-	<u>+</u> 100	nA
Dynamic (Note 6)						
Total Gate Charge	Qg	V _{DS} =48V, I _D =3A, V _{GS} =10V ^(Note 2,3)	-	9.3	-	nC
Gate-Source Charge	Q _{gs}		-	2.2	-	
Gate-Drain Charge	Q_{gd}		-	1.9	-	
Input Capacitance	Ciss	\/ -45\/ \/ -0\/	-	509	-	pF
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, f=1MHZ	-	47	-	
Reverse Transfer Capacitance	Crss	I – IIVII IZ	-	23	-	
Turn-On Delay Time	td _(on)	. \/ _20\/ _24	-	3.2	-	
Turn-On Rise Time	t _r	V_{DD} =30V, I_{D} =3A, V_{GS} =10V, R_{G} =3.3 Ω (Note 2,3)	-	9.7	-	ns
Turn-Off Delay Time	td _(off)		-	18.5	-	
Turn-Off Fall Time	t _f	NG-3.312	-	6.4	-	
Drain-Source Diode						
Maximum Continuous Drain-Source	Is		-	-	5	А
Diode Forward Current	IS					
Diode Forward Voltage	V_{SD}	I _S =1A, V _{GS} =0V	-	0.75	1	V

NOTES:

- 1. Pulse width < 300us, Duty cycle < 2%.
- 2. Essentially independent of operating temperature typical characteristics.
- 3. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- 4. The maximum current rating is package limited.
- 5. R_{OJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch² with 2oz.square pad of copper.
- 6. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTIC CURVES

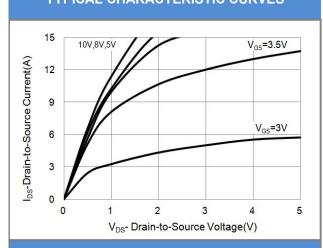


Fig.1 Output Characteristics

Fig.2 Transfer Characteristics

Fig.3 On-Resistance vs. Drain Current

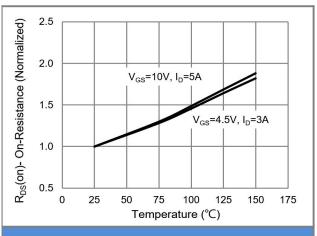
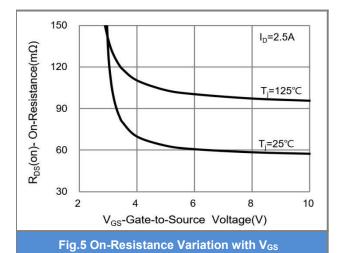



Fig.4 On-Resistance vs. Junction temperature

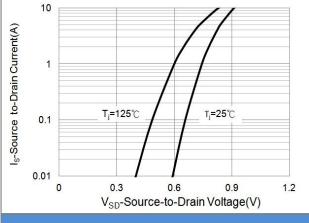


Fig.6 Source-Drain Diode Forward Voltage

TYPICAL CHARACTERISTIC CURVES

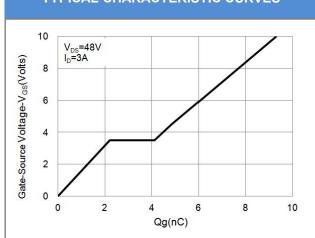


Fig.7 Gate-Charge Characteristics

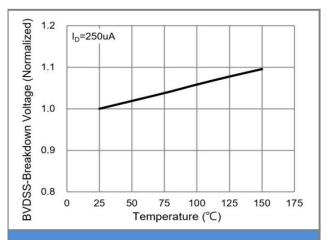


Fig.8 Breakdown Voltage Variation vs. Temperature

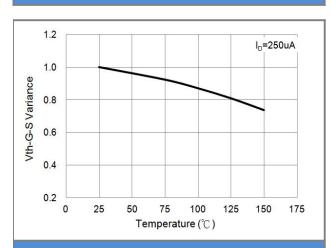


Fig.9 Threshold Voltage Variation with Temperature

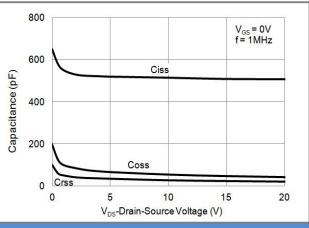
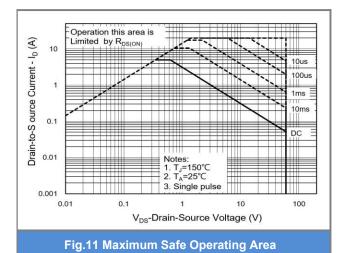
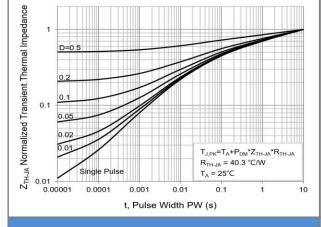
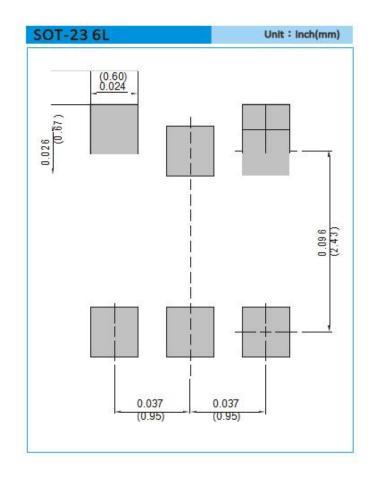



Fig.10 Capacitance vs. Drain-Source Voltage




Fig.12 Normalized Transient Thermal Impedance

Part No Packing Code Version

Part No Packing Code	Package Type	Packing Type
CSM620N4S236	SOT-23 6L	3K pcs / 7" reel

Packaging Information & Mounting Pad Layout

Notice

Specifications of the products displayed herein are subject to change without notice. CCS or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in CCS terms and conditions of sale for such products, CCS assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of CCS products including liability or warranties relating to fitness for a particular purpose, merchant ability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.

Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CCS for any damages resulting from such improper use or sale.