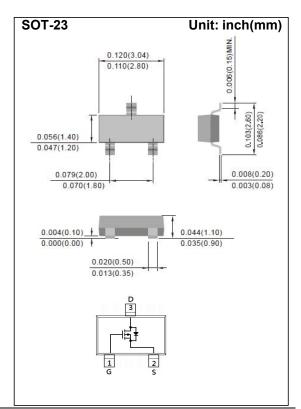


20V P-Channel Enhancement Mode MOSFET

Voltage -20 V Current -3A


Features

- RDS(ON), VGS@-4.5V, ID@-3.1A<100m Ω
- RDS(ON), VGS@-2.5V, ID@-2.0A<135m Ω
- RDS(ON), VGS@-1.8V, ID@-1.1A<190m Ω
- Advanced Trench Process Technology

Mechanical Data

• Case: SOT-23 Package

• Terminals: Solderable per MIL-STD-750, Method 2026

Maximum Ratings and Thermal Characteristics (T_A=25 °C unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS
Drain-Source Voltage		V _{DS}	-20	V
Gate-Source Voltage		V _{GS}	<u>+</u> 12	V
Continuous Drain Current		I _D	-3	Α
Pulsed Drain Current		I _{DM}	-12.5	Α
Power Dissipation	T _a =25°C		1.25	W
	Derate above 25°C	P _D	10	mW/°C
Operating Junction and Storage Temperature Range		T_{J}, T_{STG}	-55~150	°C
Typical Thermal Resistance Junction to Ambient (Note 3)		$R_{\theta JA}$	100	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS			
Static									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250uA	-20	-	-	V			
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =-250uA	-0.4	-0.71	-1.2	V			
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =-4.5V, I _D =-3.1A	-	84	100	mΩ			
		V _{GS} =-2.5V, I _D =-2.0A	-	104	135				
		V _{GS} =-1.8V, I _D =-1.1A	-	134	190				
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V	-	-0.01	-1	uA			
Gate-Source Leakage Current	I _{GSS}	V _{GS} = <u>+</u> 12V, V _{DS} =0V	-	<u>+</u> 10	<u>+</u> 100	nA			
Dynamic									
Total Gate Charge	Q_g	V _{DS} =-10V, I _D =-3.1A, V _{GS} =-4.5V (Note 1,2)	-	5.4	_	nC			
Gate-Source Charge	Q_{gs}		-	0.7	-				
Gate-Drain Charge	Q_{gd}		-	1.3	-				
Input Capacitance	Ciss	V _{DS} =-10V, V _{GS} =0V,	-	416	-	pF			
Output Capacitance	Coss		-	43	_				
Reverse Transfer Capacitance	Crss	f=1.0MHZ	-	32	-				
Switching									
Turn-On Delay Time	td _(on)	V_{DD} =-10V, I_{D} =-3.1A, V_{GS} =-4.5V, R_{G} =6 Ω (Note 1,2)	-	4	-	ns .			
Turn-On Rise Time	tr		-	27	-				
Turn-Off Delay Time	td _(off)		-	78	_				
Turn-Off Fall Time	tf		-	45	-				
Drain-Source Diode									
Maximum Continuous Drain-Source					1.5	А			
Diode Forward Current	Is		_	_	-1.5				
Diode Forward Voltage	V _{SD}	I _S =-1.0A, V _{GS} =0V	-	0.8	-1.2	V			

NOTES:

- 1. Pulse width < 300us, Duty cycle < 2%
- 2. Essentially independent of operating temperature typical characteristics.
- 3. Roja is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins mounted on a 1 inch FR-4 with 2oz. square pad of copper
- 4. The maximum current rating is package limited

TYPICAL CHARACTERISTIC CURVES

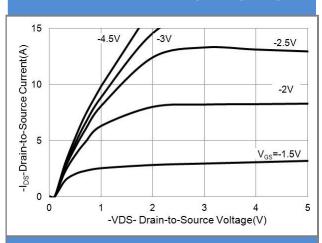


Fig.1 On-Region Characteristics

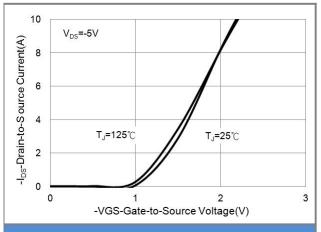


Fig.2 Transfer Characteristics

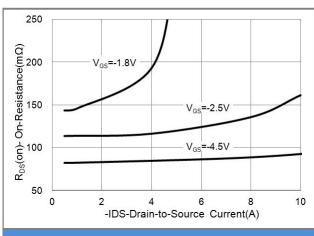


Fig.3 On-Resistance vs. Drain Current

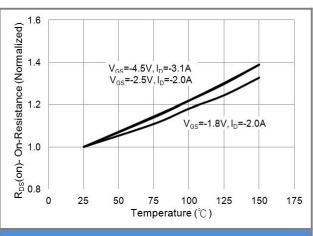


Fig.4 On-Resistance vs. Junction temperature

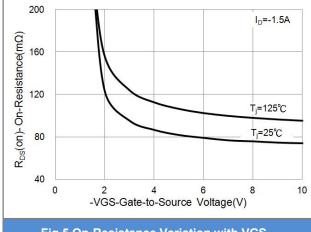
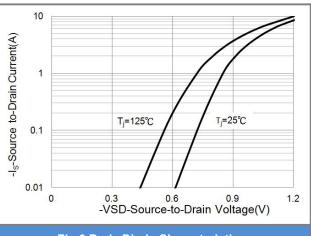



Fig.5 On-Resistance Variation with VGS.

Fig.6 Body Diode Characteristics

TYPICAL CHARACTERISTIC CURVES

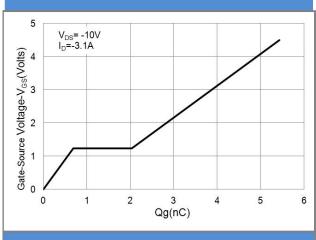


Fig.7 Gate-Charge Characteristics

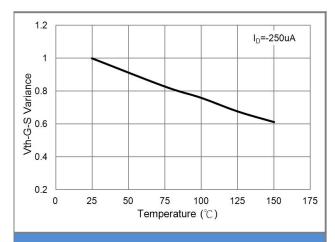


Fig.8 Threshold Voltage Variation with Temperature.

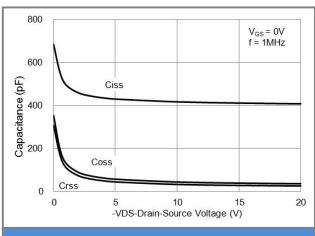
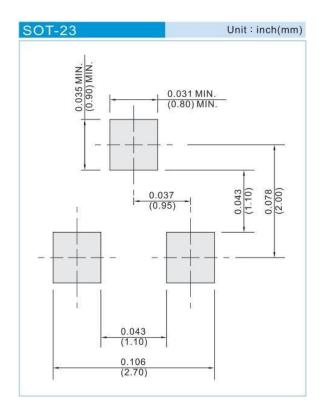



Fig.10 Capacitance vs. Drain-Source Voltage.

MOUNTING PAD LAYOUT

Notice

Specifications of the products displayed herein are subject to change without notice. CCS or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in CCS terms and conditions of sale for such products, CCS assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of CCS products including liability or warranties relating to fitness for a particular purpose, merchant ability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.

Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CCS for any damages resulting from such improper use or sale.